
 IP Support
Internet protocols for local stations

July 12, 1996

Introduction
In recent years, the internet protocol standard has grown by leaps and

bounds. Because support for it is included with every workstation, it is natural to
consider providing this support for the local station systems, in order to make it
easier to write support for data requests and settings to a control system. This
note is a working document that assumes some TCP/IP familiarity.

Note that internet protocol support is only a beginning for a host; the data
request protocols must be built on top of any internet protocol used. The
fundamental node-node communications is supported by IP, Internet Protocol. In
order to make the network accessible to a user, an entity within a node, a higher
level is needed. Above IP, the TCP/IP protocol suite includes two basic types of
data communications: stream-oriented (TCP) and datagram-oriented (UDP). Each
of these types is suited for different applications, yet higher level protocols.

The stream-oriented protocol (TCP) refers to a byte stream of data. Network
messages that support the byte stream have no built-in boundaries at all, so a
user of TCP must build that into the higher layers. It does, however, insure that
the byte stream arrives in the same order as the byte stream that was sent, by use
of sliding window acknowledgements. If it were important to support Telnet,
FTP, or SMTP with the local control stations, then TCP support would be required.

The datagram-oriented protocol (UDP) is used to transport a record, called a
datagram, across a network. It is sent on a best efforts basis, with no guarantee
that the datagram arrives at the receiving node nor that a succession of data
grams arrives in order. For a control system, which is fundamentally record-
oriented, the datagram approach has appeal. The lack of a guarantee that the
datagram reached its destination node is mitigated by the reply to a data request,
or the acknow ledg ment to a setting. The lack of guarantee of the order is really
only a problem for very large internets and is unlikely to be a problem in practice
within a single laboratory. (If one were attempting to do 15 Hz control from
Sweden, for example, there might be need for more concern.) Protocols that
expect to use UDP are NFS, RPC, SNMP, and TFTP.

In view of the above arguments, assume that a data request/setting protocol is
built on top of UDP, the datagram protocol.

IP Support July 12, 1996 page 2
Token ring frame format for IP

What is the frame format of IP datagrams on the token ring network?
According to RFC-1042, the format uses the SNAP variation of the 802.2 header.
This means that the DSAP and SSAP are $AA, the control byte is $03 (UI), the next
three bytes are the organization code $000000, and the last two bytes are the same
as the Ethernet type word. For IP frames, this is $0800. For ARP, it is $0806.

IP datagrams
What does the IP layer do? Its job is to send a datagram, limited to 64K bytes

in length, to another node across an internet. This might imply that fragmen
tation would occur. So the IP Task must support fragmentation and reassembly.
In the current local station software, there is convenient support for frame
reception passed to a receiving task. If no fragmentation takes place, then the
current support for network messages largely takes care of itself, assuming that
the protocols within the UDP header are the same as those handled now. If
fragmentation occurs, so that a fragment is received that does not represent the
entire datagram, then the fragment must be copied into a datagram buffer of
larger size. This will make it slower, of course, but is probably unavoidable.
When the complete datagram has been assembled, it can be passed to the
destination task. As a first step in support, one could ignore fragmen tation on
the token ring network. Data requests/replies have, until now, always been
limited to about 4K bytes, the maximum frame size for token ring. (Since this was
first written, fragmentation support was added 6/23/92.)

For frame transmission, there must be some means of denoting that IP packaging
is required. This must include a way to keep the port# of the requester as well as
the requesting node. A pseudo-node# can be used as the source node of the
request that can help recover the original requester's UDP source port#.

The idea here is that support for the present suite of protocols remains and is
only enhanced by the addition of IP and UDP support. These provides an optional
wrapper for the usual protocols. To support both Classic and Acnet-header-
based protocols, two different well-known UDP server ports are used.

Address resolution
What about ARP? The Address Resolution Protocol is used to find the

hardware address that corresponds to a given IP address in the case that the IP
address is on the same subnetwork. This request is broadcast with a special value
for the type word ($0806), in hopes that a node will answer with the hardware
address that corresponds to the given IP address.

What about ARP processing? If we need to send an ARP, it's one more comp
lication, because it means that the frame cannot be transmitted until a reply is

IP Support July 12, 1996 page 3
often worry about sending a message to a hitherto unknown node.

The ARP table entries are usually timed out, in order to accommodate changes in
network addresses. If this is done, it will become important to support queuing
of datagrams awaiting ARP replies. At first, we can keep ARP table entries forever
and not support datagram queuing.

IP addresses
When a message is received, a node# must somehow be assigned to it. If the

requesting node does not use the 40020000ttnn convention, then it might be an
Ethernet console with node# 08xx using the 55002000yy17 convention, in
which the yy is the bit-reversed value of nn. There is a table of Ethernet
addresses that correspond to 0800–08EF. If we can use some of that space for
dynamically assigned IP requesters, it would provide a natural place to store the
hardware address. But what about the IP address? When NetXmit has a 08zz
node#, it can find the right hardware address, say, but where can it find the IP
address? Of course, it was in the request message, but where can it be stored for
later retrieval? A different table should be used for this, one that is kept in non-
volatile memory and filled whenever a frame is received from an IP address.

When a frame is received that uses IP or ARP protocols, capture the hardware
address from the frame header and the IP address from the IP header and the UDP

port# from the UDP header. Search the table for a match on these values. If none
is found, install a new entry. Assign an internal node# and replace the source
node# in the acnet header with it. In this way, a request message can be
processed normally and the reply queued to the network using this internal
node# as a destination. The NetXmit logic can use it as a signal to send an IP
datagram and to recover the other information for building the frame header. See
the document IPARP Table for more discussion on the table's implementation.

IP Support July 12, 1996 page 4
The IP and UDP headers have the following formats:

ver

frag offset

lng TOS

total length

identification

flg

TTL proto

hdr cksm

source
IP address

destination
IP address

checksum

UDP length

dest port

source port

IP UDP

The ver is the IP protocol header version number $04, the lng is the number of
longwords in the header, between 5 and 15, but usually 5. The type-of-service byte
can be ignored initially and built as a constant (0) for transmission. The total
length is the #bytes in the datagram, including both the IP header and the rest of
the datagram. The identification is a word that is a sequence# of IP datagram sent
by the source node. It has the same value in all fragments of a datagram. The flg
bits and frag offset are used for fragmentation. The don't fragment flag bit prevents
a gateway from forwarding a fragmented datagram. A more fragments flag bit
indicates that this fragment is not the last one. It is only when a fragment of a
datagram that contains the more fragments bit clear that IP learns the length of the
entire datagram.

ICMP support
This is the error reporting mechanism. It is based upon IP just as UDP is, but it

is a required part of IP support. It provides a “ping” echo service, for one. Error
messages should be directed to the original source node in general, since the
route taken by the message in error is not available. Care should be taken to use
ICMP error replies only in situations specified by RFC-1122 recommendations.

IP Support July 12, 1996 page 5
The format of the ICMP message is as follows:

checksum

identifier

sequence#

type code

ICMP

Network messages in local station
Local station network handling is a higher level of support than either IP or

UDP, in the sense that it is message-based and not frame-based. An application
using the network routines does not see the frame boundaries, although it can
flush the network queue to force a frame boundary. It usually deals with
messages that it receives from (or queues to) the network. All current network-
related applications have this message-oriented view. Also, they can generate
either Classic protocol messages or Acnet protocol messages. It is desirable to not
break this mechanism by the intro duction of IP support. This means that frame
transmission using IP datagram frames must be automatically determined by
NetXmit logic, which extracts all queued network messages, combines them into
frames and hands them over to the token ring chipset hardware.

Frame formats used by local station
How can NetXmit decide what type of frame header to use? The difference

between Classic and Acnet is decided by the memory block type# that holds the
queued message. But we also need to communicate using ARP and ICMP, so these
may require an additional memory block type# that can be queued to the
network that would cause NetXmit to formulate those frames appropriately.
Also, one must insure that ARP and ICMP messages are not combined with others
in a common frame, as no host will expect it. For the UDP frames we are
discussing, multiple messages can be supported in the same frame because, to a
host that receives such a frame, it is only a single message sent to a server UDP

port. The port handling logic will identify the messages of, say, Acnet format and
dispatch them to the appropriate network tasks.

